Milestone App Center - Developer Guide

Build and deploy applications for the Milestone App Center.
This guide helps you:

« Understand the platform and tech stack

« Set up your development and cluster environment

« Package and register an App for installation

« Reuse and learn from the official sample apps (including sandbox usage)

o 1 App Center
« 2 Tech Stack
o 2.1 Kubernetes (K8s)
o 2.2 Helm
o 2.3 |[stio
o 2.4 Prometheus
o 2.5 Grafana
o 2.6 Apache Kafka

« 3 Setting Up the System
o 3.1 Set Up the Runtime Environment (Installation Wizard)

o 3.2 Setting_up a Dev Machine
= 3.2.1 Running_on Linux

= 3.2.2 Accessing_the Kubernetes and Helm Dashboards
= 3.2.3 Developer Options - Sandbox

o 3.3 Package your application
o 3.4 App Builder
o 3.5 Deploying_an app to Milestone App Center
o 3.6 Legacy templates
= 3.6.1 What APIs can | use to interact with XProtect?

o 3.7 Helm Recipe

+ A Appendix
o A.1 Sample Apps
o A.2 Configure WSL
o A.3 Helm Chart Requirements (Optional)

1 App Center

Milestone’'s Open Platform has always been the backbone of XProtect’s flexibility—enabling seamless
integration with a wide array of hardware, software, and third-party services. Now, that openness is
enhanced with a more streamlined and modular configuration experience, giving technical users
greater control with less complexity.

With just a few clicks, you can deploy your entire system, including access to the App Center, where
you select the exact services that define your ideal video management setup. From trusted video
analytics to specialized integrations, you can unlock the full value of your video data and convert it
into actionable intelligence. All components—core VMS features, analytics engines, and third-party
apps—are managed from a single interface, where installation and updates are handled with one-

click operations. This centralized approach reduces deployment time, simplifies maintenance, and
ensures consistent performance across your environment—whether you're managing a single site or
scaling across a distributed enterprise.

I«

@ milestone

,,,,,,,

Video Analytics Configuration
App

2 Tech Stack

The runtime environment powering the App Center is built on a robust and scalable cloud-native tech
stack designed for flexibility, observability, and performance.

2.1 Kubernetes (K8s)

An open-source platform for automating the deployment, scaling, and management of containerized
applications. Kubernetes provides a unified control plane that enables efficient orchestration, high
availability, and horizontal scalability—making it essential for modern microservices architectures.
Learn more

2.2 Helm

A package manager for Kubernetes that simplifies the deployment and lifecycle management of
applications—used here for packaging and deploying Apps. Helm Charts allow you to define, install,
and upgrade even the most complex workloads with minimal effort. /2 Learn more

2.3 Istio

A powerful service mesh used for:

« Implementing the Kubernetes Gateway APl to manage ingress traffic with TLS termination and
routing

« Enforcing authentication and authorization policies across workloads (ingress + in-cluster
access control)

« Enabling secure service-to-service communication via mutual TLS (service mesh security)

2.4 Prometheus

https://www.youtube.com/watch?v=s_o8dwzRlu4&t=104s
https://www.youtube.com/watch?v=-ykwb1d0DXU&pp=ygUTa3ViZXJuZXRlcyB0dXRvcmlhbA%3D%3D
https://gateway-api.sigs.k8s.io/

A monitoring system that collects metrics from configured targets at defined intervals—used here as
the metrics backbone feeding Grafana dashboards. It supports rule-based evaluation and alerting,
making it ideal for tracking system health and performance.

2.5 Grafana

An open-source analytics and visualization platform that integrates with Prometheus to provide real-
time insights into infrastructure and application metrics through customizable dashboards—forming
the dashboards part of the monitoring pair.

2.6 Apache Kafka

A distributed event streaming platform optimized for high-throughput, real-time data ingestion and
processing. Kafka supports:

« Publish/subscribe messaging
« Durable, ordered storage of event streams
« Real-time stream processing

Kafka is used here for real-time data streaming, enabling resilient pipelines and reactive applications

that operate on both historical and live data.

This stack ensures the App Center is scalable, observable, and ready for dynamic workloads in
production environments.

3 Setting Up the System

To develop and deploy an application in the Milestone App Center, follow this setup process. Once
the cluster is running, your app can use the built-in tech stack for deployment, monitoring, streaming,
and secure communication.

3.1 Set Up the Runtime Environment (Installation Wizard)

To deploy applications in the Milestone App Center, you first need a working environment for
running containerized workloads. Here's what you need:

« An XProtect installation .

« A client machine to run the installation-wizard wizard. (Open the How-to-Guide.pdf in
that folder for full step-by-step instructions.) This installs and configures the cluster on the
target Linux machine. Common optional flags:

o --cluster-sandbox : Set up a local sandbox consisting of a Docker registry and Helm
repository allowing you to deploy and install your app locally, before submitting the

app.

o --cluster-dev-mode : Enable Kubernetes & Helm dashboards for monitoring and
debugging

o --cluster-debug : Output verbose installation logs

o --dbg : Run the Ul installer in debug mode
o --update : To speed up the installation, you can set this flag and it will skip whatever
is already installed

« A Linux target machine (Ubuntu 24.04) with:

https://doc.milestonesys.com/latest/en-US/standard_features/sf_mc/sf_installation/mc_installthesystem.htm
https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip

o SSH server installed:

sudo apt install -y openssh-server

o A static IP address

Once setup is complete, the Linux machine will be running a Kubernetes cluster with all required
runtime components. You can access the App Center via:

« Directly at: http://<system-ip>/app-center
« Orusing the Management Client under the App Center node by installing the
AppcenterInstaller.msi

B For detailed instructions, refer to the How-to-Guide of the installation wizard.

3.2 Setting up a Dev Machine
Once the installation is complete, set up your development machine to connect and work alongside

the cluster.

Windows Users: If you're developing on a Windows machine, you'll need to install and configure
Windows Subsystem for Linux (WSL) first. See Appendix A.2 for detailed setup instructions.

3.2.1 Running on Linux
To communicate with and develop an app for App Center, make sure you have the following tools

installed:

. Docker
« Helm
. kubectl

You can install them using the setup.sh script which installs and configures Docker, kubectl, and
Helm. To execute the script run chmod +x setup.sh to make it executable and run:

./setup.sh

The script will prompt you for the IP address and SSH credentials of a server in your system. If
you’re running a multi-node setup, select the server designated as the master node in your
Kubernetes cluster.

Once the setup completes, close the terminal and open a new one to ensure your environment
variables are properly reloaded. To confirm the connection was successful, run:

kubectl get nodes

This command lists all nodes in the cluster. Example output:

> kubectl get nodes
NAME STATUS ROLES AGE VERSION
cluster-name Ready master 1h v1.29.2

https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip
https://doc.developer.milestonesys.com/appen/?path=Documentation
https://doc.developer.milestonesys.com/appen/App-Builder/setup.sh

The cluster is now up and running, providing all the essential components developers need to start
building and deploying applications.

3.2.2 Accessing the Kubernetes and Helm Dashboards

To troubleshoot and monitor the internal state of your system, both the Kubernetes Dashboard and
Helm Dashboard offer valuable insights. These tools provide visual interfaces to inspect cluster
resources, track deployments, and identify potential issues quickly.

To access the Kubernetes Dashboard, run the following Helm command

kubectl create token default | xclip -sel clip; kubectl -n kubernetes-dashboard
port-forward svc/kubernetes-dashboard-kong-proxy 10443:443

This will first generate an access token, copy it to your clipboard, and then port-forward the
Kubernetes Dashboard service to https://localhost:10443/ . The dashboard remains accessible as
long as the port-forwarding command is running. When you open the page, you'll be prompted to
enter the token—simply paste it from your clipboard. Note: the token expires after one hour, so you'll
need to re-run the command to regain access.

The Helm Dashboard is available at https://<system-ip>/helm-dashboard/ .

1. Note: Both the Kubernetes and Helm dashboards are only available if the system was set up
using the -dev-mode option.

Another useful CLI tool for monitoring your cluster is K9s, a terminal-based Ul that helps you interact
with Kubernetes resources efficiently:

microkss
microk8s-cluster

NAMESPACE? CPU_MEM %CPU/R_%CPU/L _ %MEM/R _ XMEM/L IP
/. 0 16 n, n, n 5 1

ee ol

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3.2.3 Developer Options - Sandbox
The sandbox lets you test dev builds without publishing them externally. It runs a local container
registry and Helm repo inside the system:

. Container images:

o Registry exposed at <system-ip>:5000
o Images must be pushed under sandbox.io/ (required for them to load).
o Example: if system IPis 10.10.16.15 , push to

https://github.com/kubernetes/dashboard
https://github.com/komodorio/helm-dashboard
https://k9scli.io/

10.10.16.15:5000/sandbox.io/<image>:<tag>
« Helm charts:

o Repo exposed at http://<system-ip>/app-sandbox
o Example: list charts with

helm repo add sandbox http://10.10.16.15/app-sandbox
helm search repo sandbox

The sandbox is disabled by default. Enable it with the --cluster-sandbox option when setting up
the system.

H For detailed sandbox workflow and app-builder integration, see App Builder documentation -
Section 1.3.

3.3 Package your application

To run an application on the K8s cluster, you first need to package it into one or more containers. A
container is a standalone executable that bundles everything required to run your app: code, runtime,
system tools, libraries, and settings. For example, one container might serve the frontend, another an
inference model.

Docker is the standard tool used to build these images.

O -

DOCKERFILE

Docker file Docker Image Docker Container

Once the app is containerized, you share it by pushing the image to a container registry (e.g.,

Docker Hub, ECR, GCR, or a private registry). The K8s cluster is configured to pull from specific
registries.

Examples of registry namespaces:

1. System Repository - Core system images

2. VideoOs Repository - Business apps/images, e.g.: {dockerregistry}:{port}/videoos.io/team-
name/app:tag

3. Partner Repository - For partners, tag as: {dockerregistry}:{port}/partner.io/partner-
name/app:tag*

4. Sandbox Repository - (if enabled) for dev and test images

Cluster registries for development:

https://doc.developer.milestonesys.com/appen/?path=Documentation
https://doc.developer.milestonesys.com/appen/?path=Documentation

. Docker Registry (in-cluster, DEV mode)
. Milestone Docker Registry - private registry hosted by Milestone.

3.4 App Builder

The app-builder tool helps you develop and package a containerized application that can be installed
via the App Center. It takes an App definition file as input and generates a deployable package
compatible with the App Center.

Note: Building the actual container images used by the App is outside the scope of this document.
Basic familiarity with container image workflows is assumed.

For more details, visit the App Builder documentation.

3.5 Deploying an app to Milestone App Center

Use App Builder to package and publish your App. It automatically:

« Adds the app-registration dependency

« Sets category (partner / sandbox)

« Enforces namespace isolation (release name == namespace)

« Injects system template values (system.ip , system.name , system.uuid)

You normally do not edit Helm manually. For a minimal view of what the generated chart must contain,
see Appendix A.3.

3.6 Legacy templates

« legacy.managementServer : Hostname of the Management Server in XProtect
o legacy.useTLS : Whether the legacy system is configured to use TLS

You can access these templates using the template or include functions in Helm.
As an App, the following rules apply:
1. Namespace isolation:

o The chart must be installed into a namespace that matches the Helm release name.
o This ensures each App has a private namespace and avoids conflicts with other Apps.
o Example Helm install command:

helm install my-release my-chart -n my-release --create-namespace
Here, my-chart is installed using the release name my-release , and everything is
placed in the my-release namespace.

2. Namespace labels: After installation, the namespace will automatically have these labels:

o app-registration/name
o app-registration/version
o app-registration/category

3.6.1 What APIs can | use to interact with XProtect?

The easiest way to integrate with XProtect in Windows while using the App Center is via AlBridge.

https://doc.developer.milestonesys.com/appen/Documentation/App-Builder.pdf
https://doc.milestonesys.com/AIB/Help/latest/en-us/feature_flags/ff_aibridge/aib_common_overview_aib_expl.htm?TocPath=Configure%20Milestone%20XProtect%20for%20IVA%7C_AIB-AdmMC_%7COverview%7C_____3

Milestone Al Bridge is a set of cloud-native APIs that connect:

« XProtect Video Management Software (VMS)
« Intelligent Video Analytics (IVA) apps running as containerized workloads

It forwards camera video streams from XProtect to your analytics app and lets the app send results
back as analytics data (events, metadata, video clips). In short: stream out, insights back.

Setup requirements for AlBridge:

I, Important: Before you can install the Processing Server app, you must install the App Center
plugin (file name: AppcenterInstaller.msi) into the XProtect Management Client. Download it

from: AppcenterInstaller.msi (locate AppcenterInstaller.msi). After installation, restart (or
reopen) the Management Client—an "App Center" node will appear, which you use to install the
Processing Server app.

1. (If required for Al Bridge) Install the Processing Server plugin in the XProtect Management
Client: Download plugin.
o Login in with your my Milestone account
o In the Product field, enter: "Milestone Al Bridge"
o In the Version field, enter: "Milestone Al Bridge 2.0.2"
o The list will show "Milestone Al Bridge resources", click to download the zip file.
o Extract the "aibridge_xprotect_plugin"

2. In the Management Client, open the App Center node (enabled by the App Center plugin) and
install the Processing Server app

Alternatively, you can use the XProtect VMS API Gateway. A sample application is available in the
appcenter-samples here: APl Gateway sample

3.7 Helm Recipe

Helm is a package manager for Kubernetes that simplifies the deployment of complex applications by
bundling all necessary resources into Charts—YAML-based recipes that describe how to run your app
on a cluster.

With Helm, you can use existing charts for common services or create your own. To generate a new
chart, run:

helm create <chart-name>
This will create a directory named chart-name with the following structure:

> helm create my-app-chart
— charts

F— Chart.yaml

— templates

— deployment.yaml

F— helpers.tpl
hpa.yaml
ingress.yaml

NOTES. txt
serviceaccount.yaml

TTTTT

service.yaml

https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip
https://www.milestonesys.com/my-milestone/download-software/
https://github.com/milestonesys/appcenter-samples

| L— tests
| L— test-connection.yaml
L— values.yaml

« charts: Contains any dependent charts your chart relies on.
« Chart.yaml: Holds metadata about the chart—name, version, description, etc.
. templates: Includes Kubernetes manifest templates used to deploy your app.

o deployment.yaml: Defines how your app is deployed, including replica count and
container specs.

o _helpers.tpl: Stores reusable template functions.

o hpa.yaml: Sets up Horizontal Pod Autoscaler based on resource usage.

o ingress.yaml: Manages external access via ingress rules.

o NOTES.txt: Displays helpful install notes after chart deployment.

o serviceaccount.yaml: Creates a service account with specific permissions.

o service.yaml: Defines how your app is exposed inside the cluster.

o tests/test-connection.yaml: Verifies successful deployment and connectivity.

. values.yaml: Contains default config values that users can override during installation.

Appendix

A.1 Sample Apps

You can find all the sample apps to help you get started with the cluster on app-center application
samples

« Hello World

o .NET Webserver

« PostgreSQL

. Kafka Topics

« AIBridge & Prometheus
« API Gateway Webserver

This repository is structured in two main directories.

appcenter-samples

F— build

| L— common.mak

— README.md

L— src
— aibridge-prometheus-sample
— apigateway-webserver-sample
— dotnet-webserver-sample
— hello-world
— postgresql-sample
L— utils

https://github.com/milestonesys/appcenter-samples
https://github.com/milestonesys/appcenter-samples

L— auth.psl

In the build directory, you'll find the common.mak file, which defines shared commands for building
and managing the samples. Each sample directory includes its own Makefile that imports
common.mak to leverage these commands. Under the hood, common.mak uses the App Builder (find
more info here), which provides all the necessary commands to build, push, and install your
application.

To work with a sample, navigate to its directory (where the Makefile is located) and run make
build to build the Docker image and Helm chart for that sample.

Note:
structure. Specifically:

For the common.mak targets to work correctly, each sample must follow a consistent folder

« Application source code should be placed in a containers/ subdirectory, and each container
must include a Dockerfile.

Available Make Commands

Command
Development
build
build-image
bundle
Registry
push
push-image
remove-image
clear-image-cache
Deployment
install-from-file
install-from-repo
uninstall
remove
list
Cluster
login

dashboard

Purpose

Build Helm chart and Docker image
Create Docker image only

Package app and dependencies

Push chart and image to repositories
Upload Docker image to registry
Delete local Docker image

Clear cached Docker images

Install chart from local .tgz file
Install chart from Helm repository
Remove deployed chart from cluster
Delete chart from cluster

Show available Helm charts

Authenticate with cluster

Open deployment dashboard

https://doc.developer.milestonesys.com/appen/?path=Documentation

events Show recent cluster events

To better understand what each command does, you can dry-run the desired command. Each sample
directory also contains an extended README file to help you better understand the specific
application.

A.2 Configure WSL

Step 1: Enable Windows Subsystem for Linux (WSL)
1. Open PowerShell as Administrator:

o Press Win + X and select PowerShell (Admin) or Terminal (Admin).

2. Run the following command to enable WSL and install the required components:

wsl --install

This will:

o Enable WSL2

o Install the default Linux distribution (Ubuntu 24.04.1)

o Enable Virtual Machine Platform and Windows Hypervisor Platform (required for
WSL2)

3. Restart your computer when prompted.
4. Start Ubuntu

o After installation, launch Ubuntu from the Start menu.

5. Set up your user:

o Enter a username and password when prompted.

6. Check Ubuntu version (install 24.04 if needed):

lsb release -a

Expected (if already correct):

Distributor ID: Ubuntu
Description: Ubuntu 24.04 LTS
Codename Noble

If you see a different version:

1. Install Ubuntu 24.04:
wsl --install -d Ubuntu-24.04

If that fails, open the Microsoft Store, search for "Ubuntu 24.04" and install it manually.
2. Re-run the version check:

lsb release -a

Confirm the output matches the expected block above.

A.3 Helm Chart Requirements (Optional)

Optional: Only for debugging or inspecting what App Builder produced. Do not hand-maintain these
unless directed.

Minimum required elements (App Builder adds these automatically):

1. app-registration dependencyin Chart.yaml

2. app-registration.category in values.yaml (partner or sandbox)
3. Release name == namespace (enforced during install)

4. Template values available: system.ip , system.name , system.uuid

Example Chart.yaml (excerpt):

apiVersion: v2
name: my-app
type: application
version: 0.1.0
appVersion: "0.1.0"
dependencies:
- name: app-registration
version: "1.3.0"
repository: "https://horizonsystem.azurewebsites.net/system"

values.yaml snippet:

app-registration:
category: partner

Inspect (read-only):

helm show all my-app-0.1.0.tgz | less
helm template debug my-app-0.1.0.tgz > rendered.yaml

Return to App Builder for normal iteration to stay compliant.

