
Milestone App Center - Developer Guide

Build and deploy applications for the Milestone App Center.

This guide helps you:

Understand the platform and tech stack

Set up your development and cluster environment

Package and register an App for installation

Reuse and learn from the official sample apps (including sandbox usage)

1 App Center

2 Tech Stack

2.1 Kubernetes (K8s)

2.2 Helm

2.3 Istio

2.4 Prometheus

2.5 Grafana

2.6 Apache Kafka

3 Setting Up the System

3.1 Set Up the Runtime Environment (Installation Wizard)

3.2 Setting up a Dev Machine

3.2.1 Running on Linux

3.2.2 Accessing the Kubernetes and Helm Dashboards

3.2.3 Developer Options – Sandbox

3.3 Package your application

3.4 App Builder

3.5 Deploying an app to Milestone App Center

3.6 Legacy templates

3.6.1 What APIs can I use to interact with XProtect?

3.7 Helm Recipe

A Appendix

A.1 Sample Apps

A.2 Configure WSL

A.3 Helm Chart Requirements (Optional)

1 App Center

Milestone’s Open Platform has always been the backbone of XProtect’s flexibility—enabling seamless

integration with a wide array of hardware, software, and third-party services. Now, that openness is

enhanced with a more streamlined and modular configuration experience, giving technical users

greater control with less complexity.

With just a few clicks, you can deploy your entire system, including access to the App Center, where

you select the exact services that define your ideal video management setup. From trusted video

analytics to specialized integrations, you can unlock the full value of your video data and convert it

into actionable intelligence. All components—core VMS features, analytics engines, and third-party

apps—are managed from a single interface, where installation and updates are handled with one-

click operations. This centralized approach reduces deployment time, simplifies maintenance, and

ensures consistent performance across your environment—whether you're managing a single site or

scaling across a distributed enterprise.

2 Tech Stack

The runtime environment powering the App Center is built on a robust and scalable cloud-native tech

stack designed for flexibility, observability, and performance.

2.1 Kubernetes (K8s)

An open-source platform for automating the deployment, scaling, and management of containerized

applications. Kubernetes provides a unified control plane that enables efficient orchestration, high

availability, and horizontal scalability—making it essential for modern microservices architectures. 🔗

Learn more

2.2 Helm

A package manager for Kubernetes that simplifies the deployment and lifecycle management of

applications—used here for packaging and deploying Apps. Helm Charts allow you to define, install,

and upgrade even the most complex workloads with minimal effort. 🔗 Learn more

2.3 Istio

A powerful service mesh used for:

Implementing the Kubernetes Gateway API to manage ingress traffic with TLS termination and

routing

Enforcing authentication and authorization policies across workloads (ingress + in-cluster

access control)

Enabling secure service-to-service communication via mutual TLS (service mesh security)

2.4 Prometheus

https://www.youtube.com/watch?v=s_o8dwzRlu4&t=104s
https://www.youtube.com/watch?v=-ykwb1d0DXU&pp=ygUTa3ViZXJuZXRlcyB0dXRvcmlhbA%3D%3D
https://gateway-api.sigs.k8s.io/

A monitoring system that collects metrics from configured targets at defined intervals—used here as

the metrics backbone feeding Grafana dashboards. It supports rule-based evaluation and alerting,

making it ideal for tracking system health and performance.

2.5 Grafana

An open-source analytics and visualization platform that integrates with Prometheus to provide real-

time insights into infrastructure and application metrics through customizable dashboards—forming

the dashboards part of the monitoring pair.

2.6 Apache Kafka

A distributed event streaming platform optimized for high-throughput, real-time data ingestion and

processing. Kafka supports:

Publish/subscribe messaging

Durable, ordered storage of event streams

Real-time stream processing

Kafka is used here for real-time data streaming, enabling resilient pipelines and reactive applications

that operate on both historical and live data.

This stack ensures the App Center is scalable, observable, and ready for dynamic workloads in

production environments.

3 Setting Up the System

To develop and deploy an application in the Milestone App Center, follow this setup process. Once

the cluster is running, your app can use the built-in tech stack for deployment, monitoring, streaming,

and secure communication.

3.1 Set Up the Runtime Environment (Installation Wizard)

To deploy applications in the Milestone App Center, you first need a working environment for

running containerized workloads. Here's what you need:

An XProtect installation .

A client machine to run the installation-wizard wizard. (Open the How-to-Guide.pdf in

that folder for full step‑by‑step instructions.) This installs and configures the cluster on the

target Linux machine. Common optional flags:

--cluster-sandbox : Set up a local sandbox consisting of a Docker registry and Helm

repository allowing you to deploy and install your app locally, before submitting the

app.

--cluster-dev-mode : Enable Kubernetes & Helm dashboards for monitoring and

debugging

--cluster-debug : Output verbose installation logs

--dbg : Run the UI installer in debug mode

--update : To speed up the installation, you can set this flag and it will skip whatever

is already installed

A Linux target machine (Ubuntu 24.04) with:

https://doc.milestonesys.com/latest/en-US/standard_features/sf_mc/sf_installation/mc_installthesystem.htm
https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip

SSH server installed:

sudo apt install -y openssh-server

A static IP address

Once setup is complete, the Linux machine will be running a Kubernetes cluster with all required

runtime components. You can access the App Center via:

Directly at: http://<system-ip>/app-center

Or using the Management Client under the App Center node by installing the

AppcenterInstaller.msi

📘 For detailed instructions, refer to the How-to-Guide of the installation wizard.

3.2 Setting up a Dev Machine

Once the installation is complete, set up your development machine to connect and work alongside

the cluster.

Windows Users: If you're developing on a Windows machine, you'll need to install and configure

Windows Subsystem for Linux (WSL) first. See Appendix A.2 for detailed setup instructions.

3.2.1 Running on Linux

To communicate with and develop an app for App Center, make sure you have the following tools

installed:

Docker

Helm

kubectl

You can install them using the setup.sh script which installs and configures Docker, kubectl, and

Helm. To execute the script run chmod +x setup.sh to make it executable and run:

./setup.sh

The script will prompt you for the IP address and SSH credentials of a server in your system. If

you’re running a multi-node setup, select the server designated as the master node in your

Kubernetes cluster.

Once the setup completes, close the terminal and open a new one to ensure your environment

variables are properly reloaded. To confirm the connection was successful, run:

kubectl get nodes

This command lists all nodes in the cluster. Example output:

> kubectl get nodes

NAME STATUS ROLES AGE VERSION

cluster-name Ready master 1h v1.29.2

https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip
https://doc.developer.milestonesys.com/appen/?path=Documentation
https://doc.developer.milestonesys.com/appen/App-Builder/setup.sh

The cluster is now up and running, providing all the essential components developers need to start

building and deploying applications.

3.2.2 Accessing the Kubernetes and Helm Dashboards

To troubleshoot and monitor the internal state of your system, both the Kubernetes Dashboard and

Helm Dashboard offer valuable insights. These tools provide visual interfaces to inspect cluster

resources, track deployments, and identify potential issues quickly.

To access the Kubernetes Dashboard, run the following Helm command

kubectl create token default | xclip -sel clip; kubectl -n kubernetes-dashboard

port-forward svc/kubernetes-dashboard-kong-proxy 10443:443

This will first generate an access token, copy it to your clipboard, and then port-forward the

Kubernetes Dashboard service to https://localhost:10443/ . The dashboard remains accessible as

long as the port-forwarding command is running. When you open the page, you'll be prompted to

enter the token—simply paste it from your clipboard. Note: the token expires after one hour, so you'll

need to re-run the command to regain access.

The Helm Dashboard is available at https://<system-ip>/helm-dashboard/ .

⚠️ Note: Both the Kubernetes and Helm dashboards are only available if the system was set up

using the -dev-mode option.

Another useful CLI tool for monitoring your cluster is K9s, a terminal-based UI that helps you interact

with Kubernetes resources efficiently:

3.2.3 Developer Options – Sandbox

The sandbox lets you test dev builds without publishing them externally. It runs a local container

registry and Helm repo inside the system:

Container images:

Registry exposed at <system-ip>:5000

Images must be pushed under sandbox.io/ (required for them to load).

Example: if system IP is 10.10.16.15 , push to

https://github.com/kubernetes/dashboard
https://github.com/komodorio/helm-dashboard
https://k9scli.io/

10.10.16.15:5000/sandbox.io/<image>:<tag>

Helm charts:

Repo exposed at http://<system-ip>/app-sandbox

Example: list charts with

helm repo add sandbox http://10.10.16.15/app-sandbox

helm search repo sandbox

The sandbox is disabled by default. Enable it with the --cluster-sandbox option when setting up

the system.

📘 For detailed sandbox workflow and app-builder integration, see App Builder documentation -

Section 1.3.

3.3 Package your application

To run an application on the K8s cluster, you first need to package it into one or more containers. A

container is a standalone executable that bundles everything required to run your app: code, runtime,

system tools, libraries, and settings. For example, one container might serve the frontend, another an

inference model.

Docker is the standard tool used to build these images.

Once the app is containerized, you share it by pushing the image to a container registry (e.g.,

Docker Hub, ECR, GCR, or a private registry). The K8s cluster is configured to pull from specific

registries.

Examples of registry namespaces:

1. System Repository – Core system images

2. VideoOs Repository – Business apps/images, e.g.: {dockerregistry}:{port}/videoos.io/team-

name/app:tag

3. Partner Repository – For partners, tag as: {dockerregistry}:{port}/partner.io/partner-

name/app:tag*

4. Sandbox Repository – (if enabled) for dev and test images

Cluster registries for development:

https://doc.developer.milestonesys.com/appen/?path=Documentation
https://doc.developer.milestonesys.com/appen/?path=Documentation

Docker Registry (in-cluster, DEV mode)

Milestone Docker Registry – private registry hosted by Milestone.

3.4 App Builder

The app-builder tool helps you develop and package a containerized application that can be installed

via the App Center. It takes an App definition file as input and generates a deployable package

compatible with the App Center.

Note: Building the actual container images used by the App is outside the scope of this document.

Basic familiarity with container image workflows is assumed.

For more details, visit the App Builder documentation.

3.5 Deploying an app to Milestone App Center

Use App Builder to package and publish your App. It automatically:

Adds the app-registration dependency

Sets category (partner / sandbox)

Enforces namespace isolation (release name == namespace)

Injects system template values (system.ip , system.name , system.uuid)

You normally do not edit Helm manually. For a minimal view of what the generated chart must contain,

see Appendix A.3.

3.6 Legacy templates

legacy.managementServer : Hostname of the Management Server in XProtect

legacy.useTLS : Whether the legacy system is configured to use TLS

You can access these templates using the template or include functions in Helm.

As an App, the following rules apply:

1. Namespace isolation:

The chart must be installed into a namespace that matches the Helm release name.

This ensures each App has a private namespace and avoids conflicts with other Apps.

Example Helm install command:

helm install my-release my-chart -n my-release --create-namespace

Here, my-chart is installed using the release name my-release , and everything is

placed in the my-release namespace.

2. Namespace labels: After installation, the namespace will automatically have these labels:

app-registration/name

app-registration/version

app-registration/category

3.6.1 What APIs can I use to interact with XProtect?

The easiest way to integrate with XProtect in Windows while using the App Center is via AIBridge.

https://doc.developer.milestonesys.com/appen/Documentation/App-Builder.pdf
https://doc.milestonesys.com/AIB/Help/latest/en-us/feature_flags/ff_aibridge/aib_common_overview_aib_expl.htm?TocPath=Configure%20Milestone%20XProtect%20for%20IVA%7C_AIB-AdmMC_%7COverview%7C_____3

Milestone AI Bridge is a set of cloud‑native APIs that connect:

XProtect Video Management Software (VMS)

Intelligent Video Analytics (IVA) apps running as containerized workloads

It forwards camera video streams from XProtect to your analytics app and lets the app send results

back as analytics data (events, metadata, video clips). In short: stream out, insights back.

Setup requirements for AIBridge:

⚠️ Important: Before you can install the Processing Server app, you must install the App Center

plugin (file name: AppcenterInstaller.msi) into the XProtect Management Client. Download it

from: AppcenterInstaller.msi (locate AppcenterInstaller.msi). After installation, restart (or

reopen) the Management Client—an "App Center" node will appear, which you use to install the

Processing Server app.

1. (If required for AI Bridge) Install the Processing Server plugin in the XProtect Management

Client: Download plugin.

Login in with your my Milestone account

In the Product field, enter: "Milestone AI Bridge"

In the Version field, enter: "Milestone AI Bridge 2.0.2"

The list will show "Milestone AI Bridge resources", click to download the zip file.

Extract the "aibridge_xprotect_plugin"

2. In the Management Client, open the App Center node (enabled by the App Center plugin) and

install the Processing Server app

Alternatively, you can use the XProtect VMS API Gateway. A sample application is available in the

appcenter-samples here: API Gateway sample

3.7 Helm Recipe

Helm is a package manager for Kubernetes that simplifies the deployment of complex applications by

bundling all necessary resources into Charts—YAML-based recipes that describe how to run your app

on a cluster.

With Helm, you can use existing charts for common services or create your own. To generate a new

chart, run:

helm create <chart-name>

This will create a directory named chart-name with the following structure:

> helm create my-app-chart

├── charts

├── Chart.yaml

├── templates

│ ├── deployment.yaml

│ ├── _helpers.tpl

│ ├── hpa.yaml

│ ├── ingress.yaml

│ ├── NOTES.txt

│ ├── serviceaccount.yaml

│ ├── service.yaml

https://download.milestonesys.com/private-cloud/1.1.187/runtime-platform.zip
https://www.milestonesys.com/my-milestone/download-software/
https://github.com/milestonesys/appcenter-samples

│ └── tests

│ └── test-connection.yaml

└── values.yaml

charts: Contains any dependent charts your chart relies on.

Chart.yaml: Holds metadata about the chart—name, version, description, etc.

templates: Includes Kubernetes manifest templates used to deploy your app.

deployment.yaml: Defines how your app is deployed, including replica count and

container specs.

_helpers.tpl: Stores reusable template functions.

hpa.yaml: Sets up Horizontal Pod Autoscaler based on resource usage.

ingress.yaml: Manages external access via ingress rules.

NOTES.txt: Displays helpful install notes after chart deployment.

serviceaccount.yaml: Creates a service account with specific permissions.

service.yaml: Defines how your app is exposed inside the cluster.

tests/test-connection.yaml: Verifies successful deployment and connectivity.

values.yaml: Contains default config values that users can override during installation.

Appendix

A.1 Sample Apps

You can find all the sample apps to help you get started with the cluster on app-center application

samples

Hello World

.NET Webserver

PostgreSQL

Kafka Topics

AIBridge & Prometheus

API Gateway Webserver

This repository is structured in two main directories.

appcenter-samples

├── build

│ └── common.mak

├── README.md

└── src

 ├── aibridge-prometheus-sample

 ├── apigateway-webserver-sample

 ├── dotnet-webserver-sample

 ├── hello-world

 ├── postgresql-sample

 └── utils

https://github.com/milestonesys/appcenter-samples
https://github.com/milestonesys/appcenter-samples

 └── auth.ps1

 ...

In the build directory, you'll find the common.mak file, which defines shared commands for building

and managing the samples. Each sample directory includes its own Makefile that imports

common.mak to leverage these commands. Under the hood, common.mak uses the App Builder (find

more info here), which provides all the necessary commands to build, push, and install your

application.

To work with a sample, navigate to its directory (where the Makefile is located) and run make

build to build the Docker image and Helm chart for that sample.

Note: For the common.mak targets to work correctly, each sample must follow a consistent folder

structure. Specifically:

Application source code should be placed in a containers/ subdirectory, and each container

must include a Dockerfile.

Available Make Commands

Command Purpose

Development

build Build Helm chart and Docker image

build-image Create Docker image only

bundle Package app and dependencies

Registry

push Push chart and image to repositories

push-image Upload Docker image to registry

remove-image Delete local Docker image

clear-image-cache Clear cached Docker images

Deployment

install-from-file Install chart from local .tgz file

install-from-repo Install chart from Helm repository

uninstall Remove deployed chart from cluster

remove Delete chart from cluster

list Show available Helm charts

Cluster

login Authenticate with cluster

dashboard Open deployment dashboard

https://doc.developer.milestonesys.com/appen/?path=Documentation

events Show recent cluster events

To better understand what each command does, you can dry-run the desired command. Each sample

directory also contains an extended README file to help you better understand the specific

application.

A.2 Configure WSL

Step 1: Enable Windows Subsystem for Linux (WSL)

1. Open PowerShell as Administrator:

Press Win + X and select PowerShell (Admin) or Terminal (Admin).

2. Run the following command to enable WSL and install the required components:

wsl --install

This will:

Enable WSL2

Install the default Linux distribution (Ubuntu 24.04.1)

Enable Virtual Machine Platform and Windows Hypervisor Platform (required for

WSL2)

3. Restart your computer when prompted.

4. Start Ubuntu

After installation, launch Ubuntu from the Start menu.

5. Set up your user:

Enter a username and password when prompted.

6. Check Ubuntu version (install 24.04 if needed):

lsb_release -a

Expected (if already correct):

Distributor ID: Ubuntu

Description: Ubuntu 24.04 LTS

Codename Noble

If you see a different version:

1. Install Ubuntu 24.04:

wsl --install -d Ubuntu-24.04

If that fails, open the Microsoft Store, search for "Ubuntu 24.04" and install it manually.

2. Re-run the version check:

lsb_release -a

Confirm the output matches the expected block above.

A.3 Helm Chart Requirements (Optional)

Optional: Only for debugging or inspecting what App Builder produced. Do not hand-maintain these

unless directed.

Minimum required elements (App Builder adds these automatically):

1. app-registration dependency in Chart.yaml

2. app-registration.category in values.yaml (partner or sandbox)

3. Release name == namespace (enforced during install)

4. Template values available: system.ip , system.name , system.uuid

Example Chart.yaml (excerpt):

apiVersion: v2

name: my-app

type: application

version: 0.1.0

appVersion: "0.1.0"

dependencies:

 - name: app-registration

 version: "1.3.0"

 repository: "https://horizonsystem.azurewebsites.net/system"

values.yaml snippet:

app-registration:

 category: partner

Inspect (read-only):

helm show all my-app-0.1.0.tgz | less

helm template debug my-app-0.1.0.tgz > rendered.yaml

Return to App Builder for normal iteration to stay compliant.

